skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Weihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract SummaryA chimeric contig is contig that has been incorrectly assembled, i.e. a contig that contains one or more mis-joins. The detection of chimeric contigs can be carried out either by aligning assembled contigs to genome-wide maps (e.g. genetic, physical or optical maps) or by mapping sequenced reads to the assembled contigs. Here, we introduce a software tool called Chimericognizer that takes advantage of one or more Bionano Genomics optical maps to accurately detect and correct chimeric contigs. Experimental results show that Chimericognizer is very accurate, and significantly better than the chimeric detection method offered by the Bionano Hybrid Scaffold pipeline. Chimericognizer can also detect and correct chimeric optical molecules. Availability and implementationhttps://github.com/ucrbioinfo/Chimericognizer Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract MotivationDe novo genome assembly is a challenging computational problem due to the high repetitive content of eukaryotic genomes and the imperfections of sequencing technologies (i.e. sequencing errors, uneven sequencing coverage and chimeric reads). Several assembly tools are currently available, each of which has strengths and weaknesses in dealing with the trade-off between maximizing contiguity and minimizing assembly errors (e.g. mis-joins). To obtain the best possible assembly, it is common practice to generate multiple assemblies from several assemblers and/or parameter settings and try to identify the highest quality assembly. Unfortunately, often there is no assembly that both maximizes contiguity and minimizes assembly errors, so one has to compromise one for the other. ResultsThe concept of assembly reconciliation has been proposed as a way to obtain a higher quality assembly by merging or reconciling all the available assemblies. While several reconciliation methods have been introduced in the literature, we have shown in one of our recent papers that none of them can consistently produce assemblies that are better than the assemblies provided in input. Here we introduce Novo&Stitch, a novel method that takes advantage of optical maps to accurately carry out assembly reconciliation (assuming that the assembled contigs are sufficiently long to be reliably aligned to the optical maps, e.g. 50 Kbp or longer). Experimental results demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies without introducing mis-joins or reducing genome completeness. Availability and implementationNovo&Stitch can be obtained from https://github.com/ucrbioinfo/Novo_Stitch. 
    more » « less